Stormwater Management Approaches

construction and design costs exceed larger-scale SCMs (Low Impact Development Center, 2007). Higher construction costs, however, may be offset to various degrees by reducing the investments in stormwater conveyance and storage infrastructure (i.e., less storage volume is needed) (CWP, 1998a, 2000a; Low Impact Development Center, 2007). Others have suggested that per-unit costs to reduce runoff may be less for these small-scale distributed practices because of higher infiltration rates and retention rates (MacMullan and Reich, 2007).

Compared to construction costs, less is known about the operation and maintenance costs of SCMs (Wossink and Hunt, 2003; Lambe et al., 2005; MacMullan and Reich, 2007). Most stormwater practices are not maintenance free and can create financial and long-term management obligations for responsible parties (Hager, 2003). Cost-estimation programs and procedures have been developed to estimate operation and maintenance costs as well as construction costs (SWRPC, 1991; Lambe et al., 2005; Narayanan and Pitt, 2006), but examination of observed maintenance costs is less common. Based on estimates from Wossink and Hunt (2003), the total present value of maintenance costs over 20 years can range from 15 to 70 percent of total capital construction costs for wet ponds and constructed wetlands and appear generally consistent with percentages reported in EPA (1999). Operation and maintenance costs were also reported to be a substantial percentage of construction costs of infiltration pits and bioretention areas in Southern California (DeWoody, 2007). Others estimate that over the life of many SCMs, maintenance costs may equal construction costs (CWP, 2000a). In general, maintenance costs tend to decrease as a percentage of total SCM cost as the total size of the SCM increases (Wossink and Hunt, 2003).

Very few quantifiable estimates are available for public and private regulatory compliance costs. Compliance costs could include both initial permitting costs (labor and time delays) of gaining regulatory approval for a particular stormwater design to post-construction compliance costs (administration, inspection monitoring, and enforcement). Compliance monitoring is a particular concern if a stormwater management program relies on widespread use of small-scale distributed on-site practices (Hager, 2003). Unlike larger-scale or regional stormwater facilities that might be located on public lands or on private lands with an active stormwater management plan, a multitude of smaller SCMs would increase monitoring and inspection times by increasing the number of SCMs. Furthermore, municipal governments may be reluctant to undertake enforcement actions against citizens with SCMs located on private land.

Land costs tend to be site specific and exhibit a great deal of spatial variation. Some types of SCMs, such as constructed wetlands, are more land intensive than others. In highly urban areas, land costs may be the single biggest cost outlay of land-intensive SCMs (Wossink and Hunt, 2003).

In general, cost analyses generally find that the cost to treat a given acreage or volume of water is less for regional SCMs than for smaller-scale SCMs (Brown and Schueler, 1997; EPA, 1999; Wossink and Hunt, 2003). For example, considering maintenance, capital construction, and land costs, recent estimates for North Carolina indicate that annual costs for wet ponds and constructed wetlands range between \$100 and \$3,000 per treated acre (typically less than \$1,000). Per-acre annual costs for bioretention and sand filters typically ranged between \$300 and \$3,500, and between \$4,500 and 8,500, respectively. However, if SCMs face space constraints, bioretention areas can become more cost effective. Furthermore, other classes of small, on-site practices, such as grass swales and filter strips, can sometimes be implemented for relatively low cost.

PREPUBLICATION

There are exceptions to the general conclusion that larger-scale stormwater practices tend to be less costly on a per-unit basis than more numerous and distributed on-site practices. For instance, in Sun Valley, California, a recent study indicates that installing small distributed practices (infiltration practices, porous pavement, rain gardens) was more cost effective than centralized approaches for a retrofit program (Cutter et al., 2008). In this particular setting, the difference tended to revolve around the high land costs in the urbanized setting. Small-scale practices can be placed on low-valued land or integrated into existing landscaping, reducing land costs. Centralized stormwater facilities require substantial purchases of high-priced urban properties. Similarly, small distributed practices (porous pavement, green roofs, rain gardens, and constructed wetlands) can also provide a more cost-effective approach to reducing combined sewer overflow (CSO) discharges in a highly urban setting than large structural CSO controls (storage tanks) (Montalto et al., 2007).

SCMs are now a part of most development processes and consequently will increase the cost of the development. Randolph et al. (2006) report on the cost of complying with stormwater and sediment and erosion control regulations for six developments in the Washington, D.C., metropolitan area. These costs include primarily stormwater facility construction and land costs. The findings from these case studies indicate that stormwater and erosion and sediment control comprised about 60 percent of all environmental-related compliance costs for the residential developments studied and added about \$5,000 to the average price of a home. Nationwide, stormwater and erosion and sediment controls are estimated to add \$1,500 to \$9,000 to the cost of a new residential dwelling unit (Randolph et al., 2006).

As a means to control targeted chemical constituents, SCMs may be an expensive control option relative to other control alternatives. For example, nutrients from anthropocentric sources are an increasing water quality concern for many fresh and marine waters. Some states (e.g., Virginia, Maryland, and North Carolina) require stormwater programs to achieve specific nutrient (nitrogen or phosphorus) stormwater standards. The construction, maintenance, and land costs of reducing nitrogen discharge from residential developments using bioretention areas, wet ponds, constructed wetlands, or sand filters range from \$60 to \$2,500 per pound (Aultman, 2007). These control costs can be an order of magnitude higher than nitrogen control costs from point sources or agricultural nonpoint sources. The high per-pound removal costs are due in part to the relatively low mass load of nutrients carried in stormwater runoff. These estimates, however, assume that all costs are allocated exclusively to nitrogen removal. The high perpound removal costs from the control of single pollutants highlight the importance of achieving ancillary and offsetting benefits associated with stormwater control (e.g., removal of other pollutants of concern, stream-channel protection from volume reduction, and enhancement of neighborhood amenities).

It should also be noted that installing SCMs in an existing built environment tends to be significantly more expensive than new construction. Construction costs for retrofitted extended detention ponds, wet ponds, and constructed wetlands were estimated to be two to seven times more costly than new SCMs (Schueler et al., 2007). Retrofit costs can be higher for a variety of reasons, including the need to upgrade existing infrastructure (culverts, drainage channels, etc.) to meet contemporary engineering and regulatory requirements. Retrofitting a single existing residential city block in Seattle with a new stormwater drainage system that included reduced street widths, biofiltration practices, and enhanced vegetation cost an estimated \$850,000 (see Box 5-5; Seattle Public Utilities, 2007). Estimates suggested that the costs might have been even

higher using more conventional stormwater piping/drainage systems (Chris May, personal communication, August 2007; EPA, 2007).

As discussed earlier in the chapter, stormwater runoff can be reduced and managed through better site design to reduce impervious cover. Low- to medium-density developments can reduce impervious cover through cluster development patterns that preserve open space and reduce lot sizes. Impervious surfaces and infiltration rates could be altered by any number of site-design characteristics such as reduction in street widths, reduction in the number of cul-desacs, and different setback requirements (CWP, 2000a). Finally, impervious surface per capita could be substantially reduced by increasing the population per dwelling unit.

Quantifying the cost of many of these design features is more challenging, and the literature is much less developed or conclusive than the literature on conventional SCM costs. Many design features described above (clustering, reduced setbacks, narrower streets, less curb and gutter) can significantly lower construction and infrastructure costs (CWP, 2001; EPA, 2007). Such features may reduce the capital cost of subdivision development by 10 to 33 percent (CWP, 2000a).

On the other hand, the evidence is unclear whether consumers are willing to pay for these design features. If consumers prefer features typically associated with conventional developments (large suburban lot, for example), then some aspects of alternative development designs/patterns could impose an opportunity cost on builders and buyers alike in the form of reduced housing value. For example, most statistical studies in the U.S. housing market find that consumers prefer homes with larger lots and are willing to pay premiums for homes located on cul-de-sacs, presumably for privacy and safety reasons (Dubin, 1998; Fina and Shabman, 1999; Song and Knapp, 2003). These effects, however, might be partly or completely offset by the higher value consumers might place on the proximity of open space to their homes (Palmquist, 1980; Cheshire and Sheppard, 1995; Qiu et al., 2006). Anecdotal evidence indicates that residents feel that Seattle's Street Edge Alternative program (the natural drainage system retrofit property values (City of Seattle, undated). Studies that have attempted to assess the net change in costs are limited, but some evidence suggests that the amenity values of lower-impact designs may match or outweigh the disamentities (Song and Knapp, 2003).

Incentives for Stormwater Management

The dominant policy approach to controlling effluent discharge under the Clean Water Act is through the application of technology-based effluent standards or the requirements to install particular technologies or practices. Some note that this general policy approach may not provide the regulated community with (1) incentives to invest in pollution prevention activities beyond what is required in the standard or with (2) sufficient opportunities or flexibility to lower overall compliance costs (Parikh et al., 2005).

A loosely grouped set of policies, called here "incentive-based,"¹ aim to create financial incentives to manage effluent or volume discharge. Such policies tend to be classified into two groups: price- and quantity-based mechanisms (Stavins, 2000; Parikh et al., 2005). Price-based mechanisms are created when government creates a charge (tax, fee, etc.) or subsidy (payment)

¹ These policies are sometimes called "market-based" policies, but that term will not be used here because many of the incentive-based policies discussed fail to contain features characteristic of a market system.

on an outcome that government wants to either discourage or encourage. Ideally, the price would be placed on a target outcome (effluents discharged, volume of water released, etc.) and not on the means to achieve that outcome end (such as a tax or subsidy to adopt specific technologies or practices).² Quantity-based policies require government to establish some binding limit or cap on an outcome (e.g., mass load of effluent, volume of runoff, etc.) for an identified group of dischargers, but then allow the regulated parties to "trade" responsibilities for meeting that limit or cap. The opportunity to trade creates the financial incentive. The trading concept is discussed in greater detail in Chapter 6, while this section focuses on price-based incentives.

Some stormwater utilities offer reductions in stormwater fees to landowners who voluntarily undertake activities to reduce runoff from their parcels (Doll and Lindsey, 1999; Keller, 2003). The reduction in tax obligations, called credits, can be interpreted as a financial subsidy or payment for implementing on-site runoff controls. Credit payments are typically made based on the volume of water detained. For example, as part of Portland, Oregon's Clean River Rewards program, residents and commercial property owners can reduce their stormwater utility fee by as much as 35 percent by reducing stormwater runoff from existing developed properties (Portland Bureau of Environmental Services, 2008a). Residential and commercial property owners are given a number of ways to reduce runoff to receive this financial benefit. In addition, Portland has a downspout disconnection program that aims to reduce discharge into CSOs in targeted areas in the city. Property owners may be reimbursed up to \$53 per eligible downspout (Portland Bureau of Environmental Services, 2008b).

Alternatively, stormwater utilities could (where allowed) also use fee revenue to provide private incentives for stormwater control through a competitive bidding process. Such a bidding process ("reverse auction") would request proposals for stormwater reduction projects and fund projects that reduce volume at the least cost. Proposed investments that can meet the program objectives at the lowest per unit cost would receive payments. Such a program creates private incentives to search for low-cost stormwater investments by creating a price for runoff volume reduction. The bidding program could also be used to identify cost-effective stormwater investments in areas targeted for enhanced levels of restoration. A bidding program has been proposed as a way to lower overall costs of a stormwater program in Southern California (Cutter et al., 2008). Revenue to fund such a competitive bid program could come from a variety of sources including stormwater utility fees or fees paid into an in lieu fee program.

Finally, impact fees on new developments can be structured in a way to create incentives to reduce stormwater runoff volumes. Charges based on runoff volume (or a surrogate measure like impervious surface) can provide an incentive for developers to reduce the volume of new runoff created.

PREPUBLICATION

EPA, BAFB-00001495

² The literature on what level to set the price (tax or subsidy) is vast, complex, and controversial. Parikh et al. (2005) seem to wander into this debate (perhaps unwittingly) by making a distinction between taxes based on some optimality rule (marginal damage costs equal to marginal control costs) and those based on some other sort of decision rule. Without getting into the specifics of this debate here, this discussion will simply assert more generally that price-based incentive policies structure taxes and subsidies to induce desirable behavioral change (rather than simply to raise revenue).

CHALLENGES TO IMPLEMENTATION OF WATERSHED-BASED MANAGEMENT AND STORMWATER CONTROL MEASURES

The implementation of SCMs has seen variable success. Environmental awareness, threats to potable water sources or to habitat for threatened and endangered species, problems with combined sewer overflows, and other environmental factors have caused cities such as Portland, Oregon; Seattle, Washington; Chicago, Illinois; and Austin, Texas to aggressively pursue widespread implementation of a broad range of SCMs. In contrast, other cities have been slow to implement recommended practices, for many reasons. This is particularly true for nonstructural SCMs, despite their popularity among planners and regulators for the past two decades. A host of real and perceived concerns about individual nonstructural SCMs are often raised regarding development costs, market acceptance, fire safety, emergency access, traffic and parking congestion, basement seepage, pedestrian safety, backyard flooding, nuisance conditions, maintenance, and winter snow removal operations. While most of these concerns are unfounded, they contribute to a culture of inertia when it comes to code change (CWP, 1998a, 2000a). As a result, some nonstructural SCMs are discouraged or even prohibited by local development codes. Very few communities make the consideration of nonstructural practices a required element of stormwater plan review, nor do they require that they be considered early in the site layout and design process when their effectiveness would be maximized. Finally, many engineers and planners feel they can fully comply with existing stormwater criteria without resorting to nonstructural SCMs.

Cost Issues

There are numerous cost issues that have proven to be significant barriers to the use of innovative SCMs. Special construction techniques required for the proper design and function of SCMs, specially formulated manufactured soils, expensive subsurface vaults, and increased land area requirements as a result of increased stormwater storage requirements can significantly increase site development costs. For smaller projects in highly urbanized areas where land costs are high, there can be a disproportionately large expense to comply with stormwater regulations, causing developers to seek, and often receive, exemption from requirements.

Sediment removal and related maintenance activities required to ensure the proper ongoing functioning of SCMs are activities that are not a part of normal building maintenance. Data on maintenance costs of SCMs on privately owned facilities are limited, and management companies responsible for commercial and office building maintenance have yet to provide SCM maintenance as part of their services.

Additional costs are incurred when development review periods by public agencies get extended because of an increased level of design review required to evaluate the compliance of SCMs with city ordinances. Additional review increases development costs and extends the design process. Even with specialized training for city staff to evaluate SCM submittals, deviation from the most basic type of SCM design seems to require extended review and documentation.

Cost concerns are partly responsible for the markedly slow implementation of the stormwater program. The federal deadlines for permit coverage have long passed; in fact more than 14 years have lapsed for medium and large municipalities. A good part of the delay can be

explained by the resistance of states and local governments to the unknown cost burden. Cities contend that the permit requirements are unreasonable, expensive, and unrealistic to achieve. Many local government officials view some permit provisions such as LID or better site design as intrusion into the land-use authority of local governments.

As discussed in Chapter 2, the U.S. Congress provided no start-up or upgrade financial assistance, unlike what it did for municipally owned and operated wastewater treatment plants after the promulgation of the NPDES permit program under the Clean Water Act in 1972. Local governments have been reluctant to tax residents or create stormwater utilities. States like California and Michigan even have laws that require voter approval in order for local governments to assess new fees. Thus, to implement the NPDES stormwater program, states have had to largely rely on stormwater permit fees collected to support a skeletal to modest staff for program oversight. In Denver, and presumably in other cities, there is no reduction in stormwater fees when impervious area is reduced because of construction of on-site SCMs. This amounts to a disincentive to do the "right thing." Meanwhile, the overall federal budget for the NPDES program, including stormwater, has been declining.

Long-Term Maintenance of Stormwater Control Measures

One of the weakest parts of most stormwater management programs is the lack of information about, and funding to support, the long-term maintenance of SCMs. If SCMs are not inspected and maintained on a regular basis, the stormwater management program is likely to fail. This also negatively impacts the design process—if there is no inspection program oand no accountability for maintenance, the designer has no incentive to build better, more maintenance-friendly SCMs. Finally, without an accurate assessment of the maintenance needs of an SCM, land owners and other responsible parties cannot anticipate their total costs over the lifetime of the device.

Almost all SCMs require active long-term maintenance in order to continue to provide volume and water quality benefits (Hoyt and Brown, 2005; Hunt and Lord, 2006b). Furthermore, a typical municipality may contain hundreds or thousands of individual SCMs within its jurisdiction. Thus, the long-term obligations for maintenance are considerable. For example, the annual maintenance cost of 100 medium-sized wet ponds (one-half acre to 2 acres) is estimated to be a quarter of a million dollars (Hunt and Lord, 2006c). Currently, the majority of municipal stormwater programs do not have adequate plans or resources in place for the long-term maintenance of SCMs (GAO, 2007).

A number of issues confront the long-term maintenance of SCMs. First, legal and financial responsibility for maintenance must be assigned. Historically stormwater ownership and responsibility have been poorly defined and implemented (Reese and Presler, 2005). If a party is an industrial facility that is required to obtain a permit, then responsibility for maintaining SCMs rests with the permittee. Other instances are more ambiguous. For residential developments, the responsibility for long-term maintenance could be assigned to the developer (e.g., establishing long-term financial accounts for maintenance), individual landowners, homeowners associations, or the municipality itself. Some cities, like Austin and Seattle, assume responsibility for long-term maintenance of SCMs in residential areas. Concerns over assigning responsibility to individual residential landowners or homeowners associations include insufficient technical and financial resources to conduct consistent maintenance and a

lack of inspection to require maintenance. A recent survey of municipal stormwater programs found that less than one-third perform regular maintenance on stormwater detention ponds or water quality SCMs in general residential areas (Reese and Presler, 2005). To ensure that adequate maintenance will occur, municipalities can require performance securities (performance bonds, escrow accounts, letter of credit, etc.) that ensure adequate funds are available for maintenance and repair in the event of failure to maintain the SCM by the responsible party.

An effective maintenance program also requires a system to inventory and track SCMs, inspection/monitoring, and enforcement against noncompliance. The large number of SCMs to track and manage creates management challenges. Municipal stormwater programs must administer their regulatory programs, perform inspection and enforcement activities, and maintain SCMs in public lands/rights-of-way and sometimes in residential areas. Municipal programs often do not have adequate staff to ensure that these maintenance responsibilities are adequately carried out. The lack of adequate staff for inspection and an inadequate system for prioritizing inspections have been repeatedly pointed out (Duke and Beswick, 1997; Duke, 2007; GAO, 2007).

Tracking and monitoring costs may also create disincentives for municipalities to adopt or encourage smaller-scale SCMs. For example, residential-scale rain gardens, porous driveways, rain barrels, and grass swales all have the potential to increase the cost and complexity of compliance monitoring because of the multitude of small infiltration devices that are located on private property as opposed to having fewer SCMs located in public rights-of-way or public lands. Small-scale distributed SCMs located on private property raise concerns of municipal willingness to inspect and enforce against noncompliance. Indeed, some municipalities have banned innovative SCMs like pervious pavement because the municipalities have no means to ensure their maintenance and continued operation.

Finally, there is concern that there is inadequate funding to maintain the growing number of SCMs on the landscape. The long-term funding obligation for maintenance has been difficult to assess (GAO, 2007), partly because many stormwater programs frequently do not have adequate accounting practices to define capital value and depreciation, maintenance, operation, or management programs (Reese and Presler, 2005). The problem is compounded because the long-term maintenance cost associated with various types of SCMs is not well understood. Additional research and information are needed on the costs of maintaining the performance of SCMs as experienced in the field (rather than ex ante estimates based on design plans). Research into long-term maintenance costs should include not only routine operation and maintenance costs but also costs for inspection and enforcement and remediation costs associated with SCM performance failures. Such research is critical to understanding the long-term cost obligation that is being assumed by municipal stormwater programs that are responsible for managing a growing number of SCMs.

At the present time, the maintenance schedule for many of the proprietary and nonproprietary SCMs is poorly defined. It will vary with the type of drainage area and the activities that are occurring within it and with the efficiency of the SCM. (For example, the city of Austin, Texas, has determined that the average lifespan of their sand filters ranges from 5 to 15 years, but can be as little as one year if there is construction in the drainage area.) In order to establish a maintenance schedule, an assessment protocol needs to be adopted by municipalities. The protocol, which is specific to the type of SCM, could consist of the following: each year municipalities would be required to collect data from a subset of their SCMs on public and private property, and then over a period of years these data could be used to determine

PREPUBLICATION

maintenance schedules, predict performance based on age and sediment loading, and identify failed systems. A measurement of the depth of deposited sediment might be the only test needed for settling devices, such as hydrodynamic devices and wet detention ponds. Two levels of analysis could be performed for infiltration devices—one based on simple visual observations and the other using an instrument to check infiltration rates. These assessment methods for infiltration devices have been tested at the University of Minnesota (Gulliver and Anderson, 2007). Without an assessment protocol for SCMs, the chances for poor maintenance and outright failure are greatly increased, it is difficult if not impossible to determine the actual performance of an SCM, and there will be insufficient data to reduce the uncertainty in future SCM design.

Lack of Design Guidance on Important SCMs and Lack of Training

Progress in implementing SCMs is often handicapped by the lack of local or national design guidance on important SCMs, and by the lack of training among the many players in the land development community (planners, designers, plan reviewers, public works staff, regulators, and contractors) on how to properly implement them on the ground. For example, design guidance is lacking or just emerging for many of the non-traditional SCMs, such as conservation of natural areas, earthwork minimization, product substitution, reforestation, soil restoration, impervious cover reduction, municipal housekeeping, stormwater education, and residential stewardship. Some LID techniques are better covered, such as the standards for pervious concrete from the American Concrete Institute and the National Ready Mixed Concrete Association. Design guidance for traditional SCMs such as erosion and sediment control may exist but is often incomplete, outdated, or lacking key implementation details to ensure proper on-the-ground implementation. In other cases, design guidance is available, but has not been disseminated to the full population of Phase II MS4 communities. For example, in an unpublished survey of state manuals used to develop national post-construction stormwater guidance, Hirschman and Kosco (2008) found that less than 25 percent provided sizing criteria, detailed engineering design specifications, or maintenance criteria. Nationwide guidance on SCM design and implementation may not be advisable or applicable to all physiographic, climatic, and ecoregions of the country. Rather, EPA and the states should encourage the development of regional design guidance that can be readily adapted and adopted by municipal and industrial permittees. Improvement of SCM design guidance should incorporate more direct consideration of the parameters of concern, how they move across the landscape, and the issues in receiving waters—a strategy both espoused in this report (page 351) and in recent publications on this topic (Strecker et al., 2005, 2007).

The second key issue relates to how to train and possibly certify the hundreds of thousands of individuals that are responsible for land development and stormwater infrastructure at the local and state level. New stormwater methods and practices cannot be effectively implemented until local planners, engineers, and landscape architects fully understand them and are confident on how to apply them to real-world sites. Currently, stormwater design is not a major component of the already crowded curriculum of undergraduate or graduate planning engineering or landscape architecture programs. Most stormwater professionals acquire their skills on the job. Given the rapid development of new stormwater technologies, there is a critical need for implementation of regional or statewide training programs to ensure that stormwater

PREPUBLICATION

professionals are equipped with the latest knowledge and skills. The training programs should ultimately lead to formal certification for stormwater designers, inspectors, and plan reviewers.

Different Standards in Different Jurisdictions That Are Within the Same Watershed

Governmental and watershed boundaries rarely coincide, with the result that most watersheds are made up of many municipal bodies regulating stormwater management. Unfortunately in most cases there is no overarching stormwater regulatory structure that is based upon a watershed analysis. This can result in many unfortunate conflicts, where approval of a stormwater facility does not affect the community issuing the permit. It is often said that the most effective stormwater management for an area high in the watershed is to speed the water downstream, thus saving the upstream community but severely damaging the downstream rivers. While this may be an exaggeration, the problems downstream are less of a concern to the upper watershed communities, and downstream communities may not be able to solve their water issues without help from the upstream communities.

Often neighboring communities' plans or the methods or data used do not coincide. For example, often out-of-date rainfall distributions, methods, or standards are required in the code that do not apply to the newer focus on smaller storms and volume reduction. If methods that include Modified Rational or TR-55 are used, it is difficult if not impossible to show the benefits in peak flow reduction gained through volume reduction devices. Also, some municipalities may require curb and piping and not allow swales, impending the implementation of a cost-effective design. Finally, it is difficult to observe a measureable impact of SCMs when they are guided by a patchwork of regulations. One community may require removal of the first inch of runoff, and another may require the reduction of the 25-year, post-construction peak to the 10-year preconstruction level.

Water Rights that Conflict with Stormwater Management

In the West, water is considered real property, governed by state law and regional water compacts. Landowners in urban areas rarely own surface water rights and are typically prohibited from "beneficial use" of that water, which affects how SCMs are chosen. For example, current practices in Colorado typically allow stormwater to be infiltrated within a short period of time on-site without violation of water laws. However, storage of and/or pumping this water for broader distribution is considered to be a beneficial use and is therefore prohibited. Moreover, as discussed in Chapter 2, SCMs that manage stormwater by driving the water underground with a bored, drilled, or driven shaft or a hole dug deeper than its widest surface dimension are typically considered to be "injection wells," requiring a federal permit and regular monitoring under the Safe Drinking Water Act.

Some states prohibit infiltration because of concerns over long-term groundwater pollution. In California, which does not have a uniform policy for groundwater management and groundwater rights, authority over groundwater quality management falls to several regional and local agencies. For example, the Upper Los Angeles River Area (ULARA) has a courtappointed Watermaster to manage the complex appropriation of its groundwater to user cities and agencies. The ULARA has clashed with the City of Los Angeles regarding rights to all of

PREPUBLICATION

the water that normally recharges the Los Angeles River via runoff from precipitation. In 2000, the ULARA Watermaster expressed a concern with certain permit provisions of the Los Angeles County MS4 Permit for New Development/Redevelopment that promoted infiltration, stating that the MS4 permit interfered with the adjudicated right of the City of Los Angeles to manage groundwater.

Urban Development and Sprawl

The continued expansion of urban areas is inevitable given population increases worldwide and the transition from agricultural to industrial economies. Given that urbanization of almost any magnitude—even less than 10 percent impervious area—has been demonstrated to have an impact on in-stream water quality, a central question to be addressed is how water quality can be maintained as cities grow, without having negative impacts on social and economic systems. Ideally, SCMs would perform their water quality function, contribute to the livability of cities, and enhance their economic and social potentials.

Low-density, auto-oriented urban development, commonly known as sprawl, has been the predominant pattern of development in the United States, and increasingly worldwide, since World War II. It has been widely criticized for its inefficient use of land, its high use of natural resources, and its high energy costs—all of which are associated with the required auto-oriented travel. Additionally, ongoing economic costs related to the provision of widely dispersed services and social impacts of a breakdown in community life have been identified (Brugemann, 1974). Sprawl and the impacts on in-stream water quality that result from urbanization have been an inevitable consequence of improved economic conditions. In the United States, sprawl constitutes the vast majority of development occurring today because a majority of the population is attracted to the benefits of a suburban lifestyle, government has subsidized roads and highways at the expense of public transit, and local zoning often limits development density.

There has been a great deal of innovation in city planning and design in the past decade that encourages greater density and a return to urban living. New types of zoning, New Urbanism, Smart Growth, and related innovations in urban planning and design have been developed in parallel with environmental regulations at local to national levels (see Chapter 2). They acknowledge the importance of protecting natural resources to maintain quality of life and have established water quality as an important consideration in city building.

It is not clear that current stormwater regulations can be effectively implemented over the broad range of development patterns that characterize contemporary cities or if they inadvertently favor one type of development over another. For example, on-site SMCs are often recommended as the preferred means of stormwater management, although they tend to encourage lower-density development patterns. And while they are easily implemented and regulated given the incremental, site-by-site development that is typical of most urban growth, monitoring and maintenance can be expensive and difficult for both the individual property owner and the regulating authority. In highly urbanized areas, they are often relegated to subsurface systems that are expensive and that, to be effective, require high levels of maintenance.

In newly developing areas, cluster development should be encouraged whenever possible, according to the Smart Growth principles of narrower streets, reduced setbacks, and related approaches to reduce the amount of impervious area required and land consumed. Furthermore,

an interconnected series of on-site and consolidated SCMs can reduce subsurface stormwater piping requirements. Most planned communities have dedicated park and open-space areas that can constitute 25 percent or more of a development's total land area, making it feasible to easily accommodate consolidated SCMs (typically 8 to 10 percent of impervious area) within multifunctional open space and park lands. Cost efficiencies such as a 30 percent reduction in infrastructure costs (Duaney Plater-Zyberk & Company, 2006) can be realized through Smart Growth development techniques. Clustered housing surrounded by open space, laced with trails, has appreciated in value at a higher rate than conventionally designed subdivisions (Crompton, 2007).

In order to encourage infill or redevelopment over sprawl patterns of development, innovative zoning and other practices will be needed to prevent stormwater management from becoming onerous. For example, incentive zoning or performance zoning could be used to allow for greater densities on a site, freeing other portions of the site for SCMs. Innovations in governance and finance can also be used to incorporate consolidated SCMs into urban environments. For example, the City of Denver, in updating its Comprehensive Plan, designated certain underdeveloped corridors and districts in the city as "areas of change" where it hoped to encourage large-scale infill redevelopment. Given the scale of redevelopment, it would be feasible to establish special maintenance districts, allowing the development of consolidated SCMs that have multiple functions. To fund land purchase and facility design and construction, cash in lieu of payments could be made.

Safety and Aesthetic Concerns

Vector-borne diseases, especially West Nile virus, are a concern when SCMs such as extended detention basins, constructed wetlands, and rain barrels are proposed. Furthermore, other SCMs that are poorly designed, improperly constructed, or inadequately maintained may retain water and provide an ideal breeding ground for mosquitoes, increasing the potential for disease transmission to humans and wildlife. Kwan et al. (2005) found that water-retaining SCMs increase the availability of breeding habitats for disease vectors and provide opportunistic species an extended breeding season. State Health Departments generally recommend that SCMs be designed to drain fully in 72 hours, which is the minimum time required for a mosquito to complete its life cycle under optimum conditions. In SCMs where there is permanent standing water, such as stormwater wetlands, there is the possibility of introducing biota that might prey on mosquitoes. Municipalities may have to consider the added cost of vector control and public health when implementing stormwater quality management programs.

With larger consolidated and regional extended detention facilities, concerns about the safety of children who may be attracted to such SCMs and ensuing liability must be considered. These SCMs need to be fenced off or otherwise designed appropriately to reduce the risk of drowning.

One aspect of stormwater management that is infrequently considered is the aesthetic appeal, or lack thereof, of SCMs. The visual qualities of SCMs are important because they are a growing part of the urban landscape setting. Although it can be assumed that landscapes that are carefully tended are often preferred over other types of landscapes, it depends substantially on one's point of view. For example, an engineer may consider a particular SCM that is functioning as expected to be beautiful in the sense that its engineering function has been realized, even

though there is sediment buildup, algae, or other products of a properly functioning SCM visible. Similarly, a biologist or ecologist evaluating an ecologically healthy SCM in an urban context might find it to be beautiful because of its biological or ecological diversity, whereas another individual who evaluates the same SCM finds it to be "weedy." SCMs can be viewed as a means of restoring a degraded landscape to a state that might have existed before urban development. The desire to "return to nature" is a seductive idea that suggests naturalistic SCMs that may have very little to do with an original landscape, given the dramatic changes in hydrology that are inevitable with urban streams. Each of these widely varied views of SCMs may be appropriate depending on the context and the viewer.

One goal of stormwater management should be to make SCMs desirable and attractive to a broader audience, thereby increasing their potential for long-term effectiveness. For example, the Portland convention center rain gardens demonstrate how native and non-native wetland plantings can be carefully composed as a landscape composition and also provide for stormwater treatment. If context and aesthetics of a chosen SCM are poorly matched, there is a high probability that the SCM will be eliminated or its function compromised because of modifications that make its landscape qualities more appropriate for its context.

CONCLUSIONS AND RECOMMENDATIONS

SCMs, when designed, constructed, and maintained correctly, have demonstrated the ability to reduce runoff volume and peak flows and to remove pollutants. However, in very few cases has the performance of SCMs been mechanistically linked to the guaranteed sustainment at the watershed level of receiving water quality, in-stream habitat, or stream geomorphology. Many studies demonstrate that degradation in rivers is directly related to impervious surfaces in the contributing watershed, and it is clear that SCMs, particularly combinations of SMCs, can reduce the runoff volume, erosive flows, and pollutant loadings coming from such surfaces. However, none of these measures perfectly mimic natural conditions, such that the accumulation of these SCMs in a watershed may not protect the most sensitive beneficial aquatic life uses in a state. Furthermore, the implementation of SCMs at the watershed scale has been too inconsistent and too recent to observe an actual cause-and-effect relationship between SCMs and receiving waters. The following specific conclusions and recommendations about stormwater control measures are made.

Individual controls on stormwater discharges are inadequate as the sole solution to stormwater in urban watersheds. SCM implementation needs to be designed as a system, integrating structural and nonstructural SCMs and incorporating watershed goals, site characteristics, development land use, construction erosion and sedimentation controls, aesthetics, monitoring, and maintenance. Stormwater cannot be adequately managed on a piecemeal basis due to the complexity of both the hydrologic and pollutant processes and their effect on habitat and stream quality. Past practices of designing detention basins on a site-by-site basis have been ineffective at protecting water quality in receiving waters and only partially effective in meeting flood control requirements.

Nonstructural SCMs such as product substitution, better site design, downspout disconnection, conservation of natural areas, and watershed and land-use planning can dramatically reduce the volume of runoff and pollutant load from a new development.

PREPUBLICATION

Such SCMs should be considered first before structural practices. For example, lead concentrations in stormwater have been reduced by at least a factor of 4 after the removal of lead from gasoline. Not creating impervious surfaces or removing a contaminant from the runoff stream simplifies and reduces the reliance on structural SCMs.

SCMs that harvest, infiltrate, and evapotranspirate stormwater are critical to reducing the volume and pollutant loading of small storms. Urban municipal separate stormwater conveyance systems have been designed for flood control to protect life and property from extreme rainfall events, but they have generally failed to address the more frequent rain events (<2.5 cm) that are key to recharge and baseflow in most areas. These small storms may only generate runoff from paved areas and transport the "first flush" of contaminants. SCMs designed to remove this class of storms from surface runoff (runoff-volume-reduction SCMs—rainwater harvesting, vegetated, and subsurface) can also address larger watershed flooding issues.

Performance characteristics are starting to be established for most structural and some nonstructural SCMs, but additional research is needed on the relevant hydrologic and water quality processes within SCMs across different climates and soil conditions. Typical data such as long-term load reduction efficiencies and pollutant effluent concentrations can be found in the International Stormwater BMP Database. However, understanding the processes involved in each SCM is in its infancy, making modeling of these SCMs difficult. Seasonal differences, the time between storms, and other factors all affect pollutant loadings emanating from SCMs. Research is needed that moves away from the use of percent removal and toward better simulation of SCM performance. Hydrologic models of SCMs that incorporate soil physics (moisture, wetting fronts) and groundwater processes are only now becoming available. Research is particularly important for nonstructural SCMs, which in many cases are more effective, have longer life spans, and require less maintenance than structural SCMs. EPA should be a leader in SCM research, both directly by improving its internal modeling efforts and by funding state efforts to monitor and report back on the success of SCMs in the field.

Research is needed to determine the effectiveness of suites of SCMs at the watershed scale. In parallel with learning more about how to quantify the unit processes of both structural and nonstructural practices, research is needed to develop surrogates or guidelines for modeling SCMs in lumped watershed models. Design formulas and criteria for the most commonly used SCMs, such as wet ponds and grass swales, are based on extensive laboratory and/or field testing. There are limited data for other SCMs, such as bioretention and proprietary filters. Whereas it is important to continue to do rigorous evaluations of individual SCMs, there is also a role for more simple methods to gain an approximate idea about how SCMs are performing. The scale factor is a problem for watershed managers and modelers, and there is a need to provide guidance on how to simulate a watershed of SCMs, without modeling thousands of individual sites.

Improved guidance for the design and selection of SMCs is needed to improve their implementation. Progress in implementing SCMs is often handicapped by the lack of design guidance, particularly for many of the non-traditional SCMs. Existing design guidance is often

PREPUBLICATION

incomplete, outdated, or lacking key details to ensure proper on-the-ground implementation. In other cases, SCM design guidance has not been disseminated to the full population of MS4 communities. Nationwide guidance on SCM design and implementation may not be advisable or applicable to all physiographic, climatic, and ecoregions of the country. Rather, EPA and the states should encourage the development of regional design guidance that can be readily adapted and adopted by municipal and industrial permittees. As our understanding of the relevant hydrologic, environmental, and biological processes increases, SCM design guidance should be improved to incorporate more direct consideration of the parameters of concern, how they move across the landscape, and the issues in receiving waters.

The retrofitting of urban areas presents both unique opportunities and challenges. Promoting growth in these areas is desirable because it takes pressure off the suburban fringes, thereby preventing sprawl, and it minimizes the creation of new impervious surfaces. However, it is more expensive than Greenfields development because of the existence of infrastructure and the limited availability of land. Both innovative zoning and development incentives, along with the selection of SCMs that work well in the urban setting, are needed to achieve fair and effective stormwater management in these areas. For example, incentive or performance zoning could be used to allow for greater densities on a site, freeing other portions of the site for SCMs. Publicly owned, consolidated SCMs should be strongly considered as there may be insufficient land to have small, on-site systems. The performance and maintenance of the former can be overseen more effectively by a local government entity. The types of SCMs that are used in consolidated facilities—particularly detention basins, wet/dry ponds, and stormwater wetlands—perform multiple functions, such as prevention of streambank erosion, flood control, and large-scale habitat provision.

REFERENCES

- Alexander, D., and J. Heaney. 2002. Comparison of Conventional and Low Impact Development Drainage Designs. Final Report to the Sustainable Futures Society. University of Colorado, Boulder.
- Andrews, E. D. 1984. Bed-material entrainment and hydraulic geometry of gravel-bed rivers in Colorado. Geological Society of America Bulletin 95:371-378.
- Arendt, R. 1996. Conservation Design for Subdivisions. Covelo, CA: Island Press.
- ASCE (American Society of Civil Engineers). 2007. 2007 Data Analysis Report. International Stormwater BMP Database. U.S. Environmental Protection Agency, Water Environment Research Foundation. www.bmpdatabase.orgr.
- Athayde, D. N., P. E. Shelly, E. D. Driscoll, D. Gaboury, and G. Boyd. 1983. Results of the Nationwide Urban Runoff Program—Vol. 1, Final Report, EPA WH-554. Washington, DC: EPA.
- Aultman, S. 2007. Analyzing Cost Implications of Water Quality Trading Provisions: Lessons from the Virginia Nutrient Credit Exchange Act. M.S. Thesis, Virginia Polytechnic Institute and State University, Blacksburg.
- Balusek. 2003. Quantifying Decreases in Stormwater Runoff from Deep-Tilling, Chisel-Planting and Compost Amendments. Dane County Land Conservation Department. Madison, WI.

Bannerman, R., J. Konrad, D. Becker, G. V. Simsiman, G. Chesters, J. Goodrich-Mahoney, and B. Abrams. 1979. The IJC Menomonee River Watershed Study—Surface Water Monitoring Data, EPA-905/4-79-029. U.S. Environmental Protection Agency, Chicago.

- Bannerman, R., K. Baun, M. Bohn, P.E. Hughes, and D.A. Graczyk. 1983. Evaluation of Urban Nonpoint Sources Pollution Management in Milwaukee County, Wisconsin—Vol. I, Urban Stormwater Characteristics, Constituent Sources, and Management by Street Sweeping: Chicago, U.S. PB 84– 114164. Springfield, VA: NTIS.
- Barr Engineering Co. 2001. Minnesota Small Urban Sites BMP Manual. St. Paul, MN: Metropolitan Council Environmental Services.
- Barrett, M. E., J. F. Malina, Jr., and R. J. Charbeneau. 1998. An evaluation of the performance of geotextiles for temporary sediment control. Water Environment Research 70(3):283-290.
- Barten, J., and J. Johnson. 2007. Nutrient management with the Minnesota phosphorus fertilizer law. *Lakeline* (Summer):23-28
- Bean, E. Z., W. F. Hunt, and D. A. Bidelspach. 2007. Evaluation of Four Permeable Pavement Sites in Eastern North Carolina for Runoff Reduction and Water Quality Impacts. ASCE Journal of Irrigation and Drainage Engineering 133(6):583-592.
- Bender, G. M., and M. L. Terstriep. 1984. Effectiveness of street sweeping in urban runoff pollution control. The Science of the Total Environment 33:185-192.
- Bernhardt, E., and M. Palmer. 2007. Restoring streams in an urbanizing landscape. Freshwater Biology 52:731-751.
- Bernhardt, E., M. Palmer, J. Allen, G. Alexander, K. Barnas, S. Brooks, J. Carr, S. Clayton, C. Dahm, J. Follstad-Shah, D. Galat, S. Gloss, P. Goodwin, D. Hart, B. Hassett, R. Jenkinson, S. Katz, G. M. Kondolf, P. S. Lake, R. Lave, J. L. Meyer, T. K. O'Donnell, L. Pagano, B. Powell, E. Sudduth. 2005. Ecology: Synthesizing US river restoration efforts. *Science:* 308:636-637.
- Bernot, M., and W. Dodds. 2005. Nitrogen retention, removal and saturation in lotic ecosystems. *Ecosystems* 8:442-453.
- Black and Veatch. 2005. Stormwater Utility Survey. Overland, KS: Black and Veatch.
- Braga, A., M. Horst, and R. Traver.2007. Temperature effects on the infiltration rate through an infiltration basin BMP. Journal of Irrigation and Drainage Engineering 133(6):593-601.
- Braskerud, B. C. 2001. The Influence of vegetation on sedimentation and resuspension of soil particles in small constructed wetlands. Journal of Environmental Quality 30:1447-1457.
- Brinkman, R., and G. A. Tobin. 2001. Urban Sediment Removal: The Science, Policy, and Management of Street Sweeping. Boston, MA: Kluwer Academic.
- Brown, E., D. Carac, and R. Pitt. 2004. Illicit discharge detection and elimination: A guidance manual for program development and technical assessments. Ellicott City, MD: Center for Watershed Protection.
- Brown, W., and D. Caraco. 1997. Muddy water in, muddy water out. Watershed Protection Techniques 2(3):393-404
- Brown, W., and T. Schueler. 1997. The Economics of Stormwater BMPs in the Mid-Atlantic Region. Ellicott City, MD: Center for Watershed Protection.
- Brugemann. 1974. Costs of Sprawl, 1974
- Bukaveckas, P. 2007. Effects of channel restoration on water velocity, transient storage and nutrient uptake in a channelized stream. *Environmental Science and Technology* 41:1570-1576.
- Burton, G., and R. Pitt. 2002. Stormwater effects handbook: A toolbox for watershed managers, scientists and engineers. Boca Raton, FL: CRC/Lewis.
- Caltrans. 2004. BMP Retrofit Pilot Program Final Report CTSW-RT-01-050. Sacramento, CA: California Department of Transportation.
- Cappiella, K., and K. Brown. 2000. Derivation of impervious cover for suburban land uses in the Chesapeake Bay. Final Report. Chesapeake Research Consortium. Center for Watershed Protection. Ellicott City, MD.
- Cappiella, K., T. Schueler, and T. Wright. 2006. Urban Watershed Forestry Manual. Part 2: Conserving and Planting Trees at Development Sites. Newtown Square, PA: USDA Forest Service..
- Carling, P. 1988. The concept of dominant discharge applied to two gravel-bed streams in relation to channel stability thresholds. Earth Surface Processes and Landforms 13:355-367.

- CASQA (California Stormwater Quality Association). 2007. Municipal Stormwater Program Effectiveness Assessment Guidance. California Association of Stormwater Quality Agencies. Sacramento.
- Chang, M. 2006. Forest Hydrology: An Introduction to Water and Forests, 2nd Ed. New York: CRC Press.
- Chang, Y., Chou, C., Su, K., and C. Tseng. 2005. Effectiveness of street sweeping and washing for controlling ambient TSP. Atmospheric Environment 39:1891-1902.
- Charles River Watershed Association. 2007. CRWA municipal stormwater financing: Survey results. Charles River Watershed Association. Weston, MA: Memorandum.
- Cheng, M., L. Coffman, Y. Zhang, and J. Licsko. 2005. Hydrologic responses from low impact development compared to conventional development. Pp 337-357 in <u>Stormwater Management for</u> <u>Smart Growth</u>. New York: Springer.
- Cheshire, P., and S. Sheppard. 1995. On the price of land and the value of amenities. Economica 62:247-267.
- Chollak, T., and P. Rosenfeld. 1998. Guidelines for Landscaping with Compost-Amended Soils. Prepared for City of Redmond Public Works. Redmond, WA. Available at http://www.ci.redmond.wa.us/insidecityhall/publicworks/environment/pdfs/compostamendedsoils .pdf (accessed August 26, 2008).
- City of Seattle. No date. Seattle's Natural Drainage Systems: A low-impact development approach to stormwater management. Brochure, Seattle, WA.
- Clark, S., M. Lalor, R. Pitt, and R. Field. 2005. Wet-weather pollution from commonly used building materials. Paper presented at the 10th International Conference on Urban Drainage, August 21-26, Copenhagen.
- Clausen, J. C. 2007. Jordan Cover Watershed Project Final Report. University of Connecticut, .
- Coombes, P. 2004. Water sensitive design in the Sydney Region—Practice Note 4. Rainwater Tanks. Published by the Water Sensitive Design in the Sydney Region Project.
- Coombes, P., J. Argue, and G. Kuczera. 2000. Figtree Place: A case study in water sensitive urban development (WSUD). Urban Water Journal 4(1):335-343.
- Crompton, J. 2007. The Impact of Parks and Open Spaces on Property Taxes. Chapter 1 *In:* The Economic Benefits of Land Conservation. T.F. de Brun (ed.). Trust for Public Lands.
- Cross, L., and L. Duke. 2008. Regulating industrial stormwater: State permits, municipal implementation, and a protocol for prioritization. Journal of the American Water Resources Association 44(1):86-106.
- Currier, B., J. Jones, and G. Moeller. 2005. NPDES Stormwater Cost Survey. Report prepared for the California State Water Resources Control Board. Sacramento: California State Water Resources Control Board.
- Cutter, W. B., K. A. Baerenklau, A. DeWoody, R. Sharma, and J. G. Lee. 2008. Costs and benefits of capturing urban runoff with competitive bidding for decentralized best management practices. Water Resources Research, doi:10.1029/2007WR006343..
- CWP (Center for Watershed Protection). 1998a. Better Site Design: A Handbook for Changing Development Rules in Your Community. Ellicott City, MD: Center for Watershed Protection.
- CWP. 1998b. The benefits of better site design in residential subdivisions. Watershed Protection Techniques 3(2):633-646.
- CWP. 1998c. The benefits of better site design in commercial developments. Watershed Protection Techniques 3(2):647-656.
- CWP. 2000a. Introduction to better site design. Watershed Protection Techniques 3(2):623-632.
- CWP. 2000b. National Pollutant Removal Performance Database, 2nd Ed. Ellicott City, MD: Center for Watershed Protection.
- CWP. 2001. The Economic Benefits of Better Site Design in Virginia. Document prepared for Virginia Department of Conservation and Recreation.

PREPUBLICATION

- CWP. 2004. Stormwater pond and wetland maintenance guidebook. Ellicott City, MD: Center for Watershed Protection.
- CWP. 2005. Pollution Source Control Practices. Manual 8, Urban Subwatershed Restoration Manual Series. Ellicott City, MD: Center for Watershed Protection.
- CWP. 2007a. National Pollutant Removal Performance Database, 3rd Ed. Ellicott City, MD: Center for Watershed Protection.
- CWP. 2007b. Urban stormwater retrofit practices. Manual 3, Urban Small Watershed Restoration Manual Series. Ellicott City, MD: Center for Watershed Protection.
- CWP. 2008. Municipal good housekeeping practices. Manual 9, Urban Small Watershed Restoration Manual Series. Ellicott City, MD: Center for Watershed Protection.
- Davis, A. P., W. F. Hunt, R. G. Traver, and M. E. Clar. 2008. Bioretention technology: An overview of current practice and future needs. *ASCE Journal of Environmental Engineering* (accepted).
- Debo, T. N., and A. J. Reese. 2002. Municipal Stormwater Management; Second Edition. Location: Lewis Publishers, CRC Press.
- Deschesne, M., S. Barraud, and J. P. Bardin. 2005. Experimental Assessment of Stormwater Infiltration Basin Evolution. J. Env. Engineering 131(7):1090–1098.
- DeWoody, A. E. 2007. Determining Net Social Benefits from Optimal Parcel-Level Infiltration of Urban Runoff: A Los Angles Analysis. Master's Thesis, University of California, Riverside.
- Dietz, M. E., and Clausen, J. C. 2008. Stormwater Runoff and Export Changes with Development in a Traditional and Low Impact Subdivision. Journal of Environmental Management 87(4):560-566.
- Dietz, M., and J. Clausen. 2006. Saturation to improve pollutant retention in a rain garden. Environmental Science and Technology 40(4):1335-1340.
- Doll, A., and G. Lindsey. 1999. Credits bring economic incentives for onsite stormwater management. Watershed and Wet Weather Technical Bulletin 4(1):12-15.
- Doll, R., and G. Jennings. 2003. Stream restoration: A natural channel design handbook. North Carolina State University Extension, Raleigh.
- Duaney Plater-Zyberk & Company. 2006. Light Imprint New Urbanism: A Case Study Comparison. Chicago: Congress for the New Urbanism. -06 Available at http://www.cnu.org/sites/files/Light%20Imprint%20NU%20Report-web.pdf (accessed August 26, 2008).
- Dubin, R. A. 1998. Predicting house prices using multiple listings data. Journal of Real Estate Finance and Economics 17:35-59.
- Duke, L. D. 2007. Industrial stormwater runoff pollution prevention regulations and implementation. Presentation to NRC Stormwater Committee, August 20, Seattle, WA.
- Duke, L. D., and P. G. Beswick. 1997. Industry compliance with storm water pollution prevention regulations: The case of transportation industry facilities in California and the Los Angles Region. Journal of the American Water Resources Association 33(4):825-838.
- Duke, L., and C. Augustenberg. 2006. Effectiveness of self regulation and self-reported environmental regulations for industry: the case of stormwater runoff in the U.S. Journal of Environmental Planning and Management 49(3):385-411
- Duncan, R. 2004. Selecting the "right" stormwater utility rate model an adventure in political and contextual sensitivity. Pp. in World Water Congress 2001 Bridging the Gap: Meeting the World's Water and Environmental Resources Challenges. ASCE Conference Proceedings, May 20–24, 2001, Orlando, FL.
- Emerson, C. H., C. Welty, and R. Traver. 2005. Watershed-scale evaluation of a system of storm water detention basins. Journal of Hydrologic Engineering 10(3):237-242
- Emerson, C., and R. Traver. 2008. Long-Term and Seasonal Variation of Stormwater Infiltration Best Management Practices. ASCE Journal of Irrigation and Drainage, In press.
- EPA (U.S. Environmental Protection Agency). 1983. Results of the Nationwide Urban Runoff Program. Water Planning Division, PB 84-185552, Washington, D.C.

- EPA. 1999. Preliminary Data Summary of Urban Stormwater Best Management Practices. Office of Water. EPA-821-R-99-012. Washington, DC: EPA.
- EPA. 2000. Social Costs in Guidelines for Preparing Economic Analysis. Publ. 240 R-00-003. Washington DC: EPA.
- EPA. 2005a. Environmental Technology Verification Report, Stormwater Source Area Treatment Device—BaySaver Technologies, Inc., BaySaver Separation System, Model 10K. September 2005. EPA/600/R-05/113
- EPA. 2005b. Environmental Technology Verification Report; Stormwater Source Area Treatment Device--The Stormwater Management StormFilter® using Perlite Filter Media. August 2005. EPA/600/R-05/137.
- EPA. 2005c. Environmental Technology Verification Report: Stormwater Source Area Treatment Device: Vortechnics, Inc. Vortechs System, Model 1000 September 2005 EPA/600/R-05/140.
- EPA. 2005d. National Management Measures to Control Nonpoint Source Pollution from Urban Areas. Washington, DC: U.S. Government Printing Office.
- EPA. 2007. Reducing Stormwater Costs Through Low Impact Development (LID) Strategies and Practices. EPA 841-F-07-006. Washington DC: EPA.
- Ermilio, J., and R. Traver. 2006. Hydrologic and pollutant removal performance of a bio-infiltration BMP. EWRI 2006, National Symposium.
- Ferguson, B. K. 1991. The Failure of Detention and the Future of Stormwater Design. Landscape Architecture 81(12):76-79.
- Ferguson, B. K. 2002. Stormwater Management and Stormwater Restoration, Chapter I.1 of Handbook of Water Sensitive Planning and Design, Robert L. France, editor, Lewis Publishers.
- Ferguson, B. K. 1994. Stormwater Infiltration. Boca Raton, FL: CRC Press.
- Ferguson, B. K. 1998. Introduction to Stormwater. New York: John Wiley & Sons.
- Fina, M., and L. Shabman. 1999. Some unconventional thoughts on sprawl. William and Mary Environmental Law Review 23(3):739-775.
- FISRWG (Federal Interagency Stream Restoration Working Group). 2000. Stream Corridor Restoration: Principles, Processes and Practices. Washington, DC: USDA Natural Resource Conservation Service..
- Florida Stormwater Association. 2003. Stormwater Utilities Survey. Available online at http://www.florida-stormwater.org/surveys/2003/menu.asp (accessed July 2006).
- GAO (General Accounting Office). 2007. Goetz, S., R. Wright, A. Smith, E. Zinecker, and E. Schaub.
 2003. IKONOS imagery for resource management: Tree cover, impervious surfaces, and riparian buffer analyses in the mid-Atlantic region. Remote Sensing in the Environment 88:195-208
- Gomi, T., R. Sidle, and J. Richardson. 2002. Understanding processes and downstream linkages of headwater systems. *BioScience* 53(10):905-915.
- Greenway, M., P. Dale, and H. Chapman. 2003. An assessment of mosquito breeding and control in 4 surface flow wetlands in tropical-subtropical Australia. Water Science and Technology 48(5):249-256.
- Gregory, J., M. Duke, D. Jones, and G. Miller. 2006. Effect of urban soil compaction on infiltration rates. Journal of Soil and Water Conservation. 61(3):117-133.
- Groffman, P., A. Dorset, and P. Mayer. 2005. N processing within geomorphic structures in urban streams. Journal North American Benthological Society 24(3):613-625.
- Gulliver, J. S., and J. L. Anderson. 2007. Assessment of Stormwater Best Management Practices. Regents of the University of Minnesota. Available at http://wrc.umn.edu/outreach/stormwater/ (accessed December 4, 2007).
- Hager, M. C. 2003. Low impact development: Lot-level approaches to stormwater management are gaining ground. Stormwater . Available at http://www.lowimpactdevelopment.org/lid%20articles/stormwater feb2003.pdf (accessed August

26, 2008).

- Hardy, M, P. Coombes, and G. Kuczera. 2004. An investigation of estate level impacts of spatially distributed rainwater tanks. Proceedings of the 2004 International Conference on Water Sensitive Urban Design—Cities as Catchments,. November 21–25, 2004, Adelaide.
- Hathaway, J., and W. Hunt. 2006. Level spreaders: Overview, design and maintenance. Urban Waterways. North Carolina State University and Cooperative Extension. Raleigh.
- Heaney, J. P., D. Sample, and L. Wright. 2002. Costs of Urban Stormwater Control. EPA-600-02/021. Washington, DC: EPA.
- Heasom, W., R. G. Traver, and A. Welker. 2006. Hydrologic modeling of a bioinfiltration best management practice. Journal of the American Water Resources Association 42(5):1329-1347.
- Hillel, D. 1998. Environmental Soil Physics. San Diego: Academic Press.
- Hirschman, D., and J. Kosco. 2008. Managing stormwater in your community: a guide for building an effective post-construction problem. EPA Publication 833-R-08-001, Tetra-tech, Inc. and Center for Watershed Protection. Ellicott City, MD
- Holman-Dodds, J., A. Bradley, and K. Potter. 2003. Evaluation of hydrologic benefits of infiltration based urban stormwater management. Journal of the American Water Resources Association 39(1):205-215.
- Horner, R. R., and C. Chapman. 2007. NW 110th Street Natural Drainage System Performance Monitoring, with Summary of Viewlands and 2nd Avenue NW SEA Streets Monitoring. Report to Seattle Public Utilities by Department of Civil and Environmental Engineering, University of Washington, Seattle.
- Horner, R., H. Lim, and S. Burges. 2003. Hydrologic Monitoring of the Seattle Ultra-Urban Stormwater Management Project. Water Resources Series. Technical Report 170. Seattle, WA: University of Washington Department of Civil and Environmental Engineering.
- Hoyt, S., and T. Brown. 2005. Stormwater pond and wetland maintenance concerns and solutions. Paper presented at the EWRI 2005: Impacts of Global Climate Change Conference, American Society of Civil Engineers, Anchorage, Alaska, May 15-19.
- Huber, W. L. Cannon and M. Stouder. 2006. BMP Modeling Concepts and Simulation. Oregon State University, Corvallis. EPA/600/R-06/033 U.S. Environmental Protection Agency.
- Hunt, W. F., and B. Lord. 2006c. Stormwater wetlands and wet pond maintenance. AGW-588-07. North Carolina Cooperative Extension Service.
- Hunt, W. F., and W. G. Lord. 2006b. Determining Inspection and Maintenance Costs for Structural BMPs in North Carolina. Submitted to University of North Carolina. Water Resources Research Institute. (November).
- Hunt, W. F., J. T. Smith, S. J. Jadlocki, J. M. Hathaway, and P. R. Eubanks. 2008. Pollutant removal and peak flow mitigation by a bioretention cell in urban Charlotte, NC. ASCE Journal of Environmental Engineering 134(5):403-408.
- Hunt, W., and W. Lord. 2006a. Bioretention Performance, Design, Construction, and Maintenance. AG-588-05. North Carolina Cooperative Extension Service. Urban Waterways.
- Jefferies, C. 2004. Sustainable Drainage Systems in Scotland: The Monitoring Programme. Scottish Universities SUDS Monitoring Project. Dundee, Scotland.
- Johnson, C., T. Driscoll, T. Siccama and G. Likens. 2000. Elemental fluxes and landscape position in a northern hardwood forest ecosystem. *Ecosystems*. 3: 159-184.
- Johnston, D. M., J. B. Braden, and T. H. Price. 2006. Downstream economic benefits of conservation development. Journal of Water Resources Planning and Management. 132(1):35-43.
- Kaspersen, J. 2000. The stormwater utility: Will it work in your community? Stormwater 1(1). Available at http://www.forester.net/sw 0011 utility.html (accessed August 26, 2008).
- Kaushal, S., P. Groffman, P. Meyer, E. Striz, and A. Gold. 2008. Effects of stream restoration on denitrification in an urbanizing watershed. *Ecological Applications* 18(3):789-804.

Keller, B. 2003. Buddy can you spare a dime? What is stormwater funding. Stormwater 4:7. Kitchell, A. 2002. Managing for a pure water supply. Watershed Protection Techniques 3(4):800-812.

PREPUBLICATION

- Konrad, C. 2003. Opportunities and constraints for urban stream rehabilitation. Pp in Restoration of Puget Sound Rivers, D. Montgomery, S. Bolton, D. Booth, and L. Wall, eds. Seattle: University of Washington Press.
- Kwan, J., M. Metzger, M. Shindelbower, and C. Fritz. 2005. Mosquito production in stormwater treatment devices in South Lake Tahoe, California. Proceedings and Papers of the Seventy-Third Annual Conference of the Mosquito and Vector Control Association of California 73:113-119.
- Kwiatkowski, M., A. L. Welker, R. G. Traver, Vanacore, M., & Ladd, T. 2007. Evaluation of an infiltration best management practice (BMP) utilizing pervious concrete. Journal of the American Water Resources Association (in press).
- Lager, J. A., W. G. Smith, and G. Tchobanoglous. 1977. Catchbasin Technology Overview and Assessment. EPA-600/2-77-051. Cincinatti, OH: EPA.
- Lambe, L., M. Barrett, B. Woods-Ballard, R. Kellagher, P. Martin, C. Jefferies, and M. Hollon. 2005. Performance and Whole Life Costs of Best Management Practices and Sustainable Urban Drainage Systems. Publ. 01-CTS-21T, Alexandria VA: Water Environment Research Foundation.
- Larson, M. L., D. B. Booth, and S. M. Morley. 2001. Effectiveness of large woody debris in stream rehabilitation projects in urban basins. Ecological Engineering 18(2):211-226.
- Law, N. 2006. Research in support of an interim pollutant removal rate for street sweeping and storm drain cleanout. Technical Memo No. 2. Prepared for the EPA Chesapeake Bay Program and Urban Stormwater Working Group. Ellicott City, MD: Center for Watershed Protection.
- Law, N., K. Diblasi, and U. Ghosh. 2008. Deriving Reliable Pollutant Removal Rates for Municipal Street Sweeping and Storm Drain Cleanout Programs in the Chesapeake Bay Basin. Ellicott City, MD: Center for Watershed Protection.
- Legg, A., R. Bannerman, and J. Panuska. 1996. Variation in the relation of runoff from residential lawns in Madison, Wisconsin. USGS Water Resources Investigations Report 96-4194. U.S. Geological Survey.
- Lehner, P., G. P. Aponte Clark, D. M. Cameron, and A.G. Frank. 1999. Stormwater Strategies: Community Strategies to Runoff Pollution. Natural Resources Defense Council. Available at http://www.nrdc.org/water/pollution/storm/stoinx.asp.
- Leopold, L. B. 1968. Hydrology for Urban Planning—A Guidebook on the Hydrologic Effects of Urban Land Use. USGSCircular 554. Washington, DC: U.S. Geological Survey.
- Lichter, J., and P. Lindsey. 1994. Soil compaction and site construction: Assessment and case studies. The Landscape Below Ground. International Society of Arboriculture.
- Line, D., and N. White. 2007. Effect of development on runoff and pollutant export. Water Environment Research 75(2):184-194.
- Lloyd, S., T. Wong and C. Chesterfield. 2002. Water sensitive urban design: a stormwater management perspective. Cooperative Research Centre for Catchment. Monash University, Victoria 3800 Australia. Industry Report 02/10
- Loucks, D. P., E. van Beek, J. R. Stedinger, J. P. M. Dijkman, and M. T. Villars. 2005. Water Resources Systems Planning and Management: An Introduction to Methods, Models, and Applications. Paris: UNESCO.
- Low Impact Development Center. 2007. Introduction to low impact development. Available at http://www.lid-stormwater.net/intro/background.htm (accessed December 4, 2007).
- Lowrance, R., and J. Sheridan. 2005. Surface runoff quality in a managed three zone riparian buffer. Journal of Environmental Quality 34:1851-1859.
- MacMullan, E., and S. Reich. 2007. The Economics of Low-Impact Development: A Literature Review. Eugene, OR:ECONorthwest. Available at http://www.econw.com/reports/ECONorthwest_Low-Impact-Development-Economics-Literature-Review.pdf (accessed August 26, 2007).
- MacCrae, C. R. 1997. Experience from morphological research on Canadian streams: Is control of the two-year frequency runoff event the best basis for stream channel protection? Proceedings of the Effects of Watershed Developments and Management on Aquatic Ecosystems Conference,

Snowbird, UT, August 4–9, 1996, L. A. Roesner, ed. New York: American Society of Civil Engineers.

- Manor, A. W. 1966. Public works in ancient Mesopotamia. Civil Engineering 36(7):50-51.
- MD DNR. 2005. A Users Guide to Watershed Planning in Maryland. Annapolis, MD: DNR Watershed Services.
- McBride, M., and D. Booth. 2005. Urban impacts on physical stream condition: Effects on spatial scale, connectivity, and longitudinal trends. Journal of the American Water Resources Association 6:565-580.
- McCuen, R. H. 1979. Downstream effects of stormwater management basins. Journal of the Hydraulics Division 105(11):1343-1356.
- McHarg, I. L., and F. R. Steiner. 1998. To Heal the Earth, Selected Writings of Ian McHarg. Washington, DC: Island Press.
- McHarg, I. L., and J. Sutton. 1975. Ecological Plumbing for the Texas Coastal Plain. Landscape Architecture 65:78-89.
- MD DNR (Maryland Department of Natural Resources). 2003. Critical Area 10% Rule Guidance Manual: Maryland Chesapeake and Atlantic Coastal Bays. Annapolis, MD: Critical Area Commission.
- Meyers, J. 2003. Where Rivers Are Born: The Scientific Imperative for Defending Small Streams and Wetlands. Washington, D.C.: American Rivers.
- Mineart, P., and S. Singh. 1994. Storm Inlet Pilot Study. Performed by Woodward Clyde Consultants for Alameda County Urban Runoff Clean Water Program.
- Montalto, F., C. Behr, K. Alfredo, M. Wolf, M. Arye, and M. Walsh. 2007. Rapid assessment of the costeffectiveness of low impact development for CSO control. Landscape and Urban Planning 82(3):117-131.
- Moore, A. and M. Palmer. 2005. Invertebrate diversity in agricultural and urban headwater streams: Implications for conservation and management. Ecological Applications 15(4):1169-1177.
- Morgan, R. A., F. G. Edwards, K. R. Brye, and S. J. Burian. 2005. An evaluation of the urban stormwater pollutant removal efficiency of catch basin inserts. Water Environment Research 77(5):500-510.
- MSSC (Minnesota Stormwater Steering Committee). 2005. Minnesota Stormwater Manual. St. Paul MN: Emmons & Oliver Resources, Inc. Minnesota Pollution Control Agency.
- NAFSMA (National Association of Flood and Stormwater Management Agencies). 2006. Guidance for Municipal Stormwater Funding. Location: Publisher.

http://www.nafsma.org/Guidance%20Manual%20Version%202X.pdf

Narayanan, A., and R. Pitt. 2006. Costs of urban stormwater control practices. Tuscaloosa, AL: Department of Civil, Construction and Environmental Engineering, University of Alabama.

- Nichols, D., Akers, M.A., Ferguson, B., Weinberg, S., Cathey, S., Spooner, D., and Mikalsen, T. 1997. Land development provisions to protect Georgia water quality. The School of Environmental Design, University of Georgia. Athens, GA. 35pp.
- NRC (National Research Council). 2000. Watershed Management for a Potable Water Supply. Washington, DC: National Academy Press..
- PaDEP (Pennsylvania Department of Environmental Protection). 2006. Pennsylvania Stormwater Best Management Practices Manual. Bureau of Stormwater Management, Division of Waterways, Wetlands and Erosion Control. Harrisburg, PA.
- Palmquist, R. 1980. Alternative techniques for developing real estate price indexes. Review of Economics and Statistics 62(3):442-448.
- Parikh, P., M. A. Taylor, T. Hoagland, H. Thurston, and W. Shuster. 2005. Application of market mechanism and incentives to reduce stormwater runoff: An integrated hydrologic, economic, and legal approach. Environmental Science and Policy 8:133-144.
- Passeport, E., Hunt, W.F., Line, D.E., and Smith, R.A. 2008. Effectiveness of two grassed bioretention cells at reducing stormwater pollution. *Under review*.

- Perez-Pedini, C., J. Limbruneer, and R, Vogel. Optimal location of infiltration-based Best management practices for stormwater management. ASCE Journal of Water Resources Planning and Management, 131(6): 441-448
- Philips, R., C. Clausen, J. Alexpoulus, B. Morton, S. Zaremba, and M. Cote. 2003. BMP research in a low-impact development environment: The Jordan Cove Project. Stormwater 6(1):1-11.
- Pickup, G., and Warner, R. F. 1976. Effects of hydrologic regime on magnitude and frequency of dominant discharge. Journal of Hydrology 29:51-75.
- Pitt, R. 1979. Demonstration of Nonpoint Pollution Abatement Through Improved Street Cleaning Practices. EPA-600/2-79-161. Cincinnati, OH: EPA.
- Pitt, R., with contributions from S. Clark, R. Field, and K. Parmer. 1996. Groundwater Contamination from Stormwater. ISBN 1-57504-015-8. Chelsea, MI: Ann Arbor Press, Inc. 219 pages.
- Pitt, R. J. Lantrip, and R. Harrison. 1999b. Infiltration through disturbed urban soils and compostamended soil effects on runoff quality and quantity. Research Report EPA/600/R-00/016. Office of Research and Development. Washington, DC: EPA.
- Pitt, R., Maestre, A., and Morquecho, R. 2004b. National Stormwater Quality Database. Version 1.1. Available at http://rpitt.eng.ua.edu/Research/ms4/Paper/Mainms4paper.html.
- Pitt, R., T. Brown, and R. Morchque. 2004a. National Stormwater Quality Database. Version 2.0. University of Alabama and Center for Watershed Protection. Final Report to U.S. Environmental Protection Agency.
- Pitt, R., S. Chen, S. Clark, and J. Lantrip. 2005. Soil structure effects associated with urbanization and the benefits of soil amendments. Pp. in World Water and Environmental Resources Congress. Conference Proceedings. American Society of Civil Engineers. Anchorage, AK.
- Pitt, R., T. Brown, and R. Morchque. 2007. National Stormwater Quality Database. Version 3.0. Final Report to U.S. Environmental Protection Agency. University of Alabama and Center for Watershed Protection.
- Pouyat, R., I. Yesilonis, J. Russell-Anelli, and N. Neerchal. 2007. Soil chemical and physical properties that differentiate urban land use and cover types. Soil Science Society of America Journal 71(3):1010-1019.
- Pouyat, R., M. McDonnel, and S. Pickett. 1995. Soil characteristics of oak stands along an urban-rural land use gradient. Journal of Environmental Quality 24:516-526.
- Prince George's County, Maryland. 2000. Low-Impact Development Design Strategies. EPA 841-B-00-003. Location: EPA.
- Qiu, Z., T. Prato, and G. Boehm. 2006. Economic valuation of riparian buffer and open space in a suburban watershed. Journal of the American Water Resources Association 42(6):1583-1596.
- Randolph, J., A. C. Nelson, J. M. Schilling, and M. Nowak. 2006. Impact of environmental regulations on the cost of housing. Paper presented at the Association of Collegiate School of Planning, Fort Worth, TX. November 9.
- Rea, M., and R. Traver. 2005. Performance monitoring of a stormwater wetland best management practice, National Conference, World Water & Environmental Resources Congress 2005 (EWRI/ASCE).
- Reed, S. C., R. W. Crites, and E. J. Middlebrooks. 1998. Natural systems for waste management and treatment. McGraw-Hill Professional. ISBN 0071346627, 9780071346627.
- Reese, A. J., and H. H. Presler. 2005. Municipal stormwater system maintenance. Stormwater. Available at http://www.stormh2o.com/sw 0509 municipal.html (accessed December 4, 2007).
- Report to Congressional Requesters, Further Implementation and Better Cost Data Needed to Determine Impact of EPA's Storm Water Program on Communities. GAO-07-479, May. Washington, DC: GAO.
- Richman, T. 1997. Start at the Source: Design Guidance for Storm Water Quality Protection. Oakland, CA: Bay Area Stormwater Management Agencies Association.
- Roy, A., C. Faust, M. Freeman, and J. Meyer. 2005. Reach-scale effects of riparian forest cover on urban stream ecosystems. *Canadian Journal of Fisheries and Aquatic Science* 62:2312-2329.